
Data Structures taught in a Web-based Environment
 Neha Kumar (neha@cory.eecs.berkeley.edu)

Abstract

This paper suggests modifications in the
traditional approach followed to instruct
Computer Science students and
discusses a new web-based medium of
imparting the same education. It focuses
on the design of curriculum for a lower-
division Data Structures course, tailored
to be taught using an online learning
environment for students. It also
elaborates on the benefits of this
approach in comparison with the
traditional form of instruction of the
course and discusses research questions
yet to be explored in the near future.

Background

The traditional approach to Computer
Science education, which requires a
student to attend lectures, a laboratory
section, and/or a discussion section, has
been in practice for several decades.
Technological advancements in the field
of computers enabling widespread use of
the Internet make it worth the while,
however, to explore the efficacy of other
possible approaches towards this end –
the Internet itself. The WISE (Web-
based Inquiry Science Environment) tool
developed by the School of Education at
University of California, Berkeley offers
one such approach.

WISE enables students to learn in an
online environment with its inclusion of
several different activities such as online
reading, real-time online discussions,
brainstorming sessions, online note
taking etc. Instead of passively listening
to lectures, WISE allows the students to

participate more actively in the learning
process. This increased participation is
made possible by the extensive nature of
the activities the package has to offer,
essentially allowing its learners to do all
they could in a classroom learning
environ and much more.

The class of people bene fiting from this
mode of teaching includes not just the
students, but the instructors as well.
Using WISE, instructors are able to
monitor the progress of their students by
checking on their level and quality of
participation periodically. This allows
them to identify their weak and strong
pupils with greater ease, recognizing
problem areas faster and addressing
them better, thus performing better as
teachers. Minimal response time and
constant feedback enrich the roles of
both the student and the teacher.

The WISE tool for instruction consists of
three components: a course builder,
which allows the instructor to add to the
online database of student exercises and
activities; an online learning
environment that delivers activities to
the student and stores their work; and a
course portal that serves as the students’
primary interface to the system.

The main focus of this paper is to
discuss how WISE fits in with imparting
the Computer Science curriculum to
undergraduate students, specifically with
respect to the Data Structures course
offering at UC Berkeley: CS 61B. It also
discusses the adaptation of the 61B
curriculum to suit the framework of
WISE.

Related Work

During the course of the Summer 2002
session at UC Berkeley, the Computer
Science department’s introductory
course in programming, CS 3, was
taught using the WISE learning
environment. This was done with the
intention of testing out a new version of
WISE that had been developed over the
previous semester to judge its potential
as an effective teaching tool for CS 3.

The class typically consists of students
unfamiliar with the concept of
programming, without much experience
with computers. In addition, since more
of them are freshmen, CS 3 also ends up
being one of the first courses they take at
college. Taking these factors into
account, it becomes the responsibility of
the instructor to pay cautious attention to
the pace of the course and ensure that
there are no large jumps in the difficulty
levels of the course material.

The content of the course, as it has been
taught over the years, includes functional
programming, recursive programming,
higher-order recursive techniques and
lists, in that order of instruction. The
session ends with the students writing
approximately 200 lines of code in what
constitutes for most their first actual
Computer Science project. This is
intended to prepare them for harder
course projects to come in semesters that
follow.

Traditionally taught in four hours of
lecture, two hours of discussion
(supervised by a Teaching Assistant) and
four hours of mandatory laboratory work
during a regular summer session, the
course was modified this summer to

include fourteen hours of laboratory
sessions in a week structured thus:

• quizzes testing the previous day’s
material

• programming tasks – composing
and analyzing programs

• online reading assignments that
presented concise summaries of
the text material

• collaboration with other students

The results at the end of the offering, in
the form of a final exam for the students,
were quite positive. The same exam
administered under the classroom mode
of instruction in 1994 had yielded an
average score of 25.8 out of 60. The
summer group of students was able to
raise this average by 7.1 points to 32.9.
The course evaluations were also
overwhelmingly positive in favor of the
WISE learning medium and the
instructors. One student commented:

“I like the way lectures are combined
with problems online. I am learning
more about CS than I ever did before.
This method of teaching is very practical
and works a lot better than regular
lecture/lab/discussion sections. … the
professor is always there ready to answer
any question you may have. People are
not afraid to ask the stupid question
because it does not interrupt anyone
else’s progress. I really support this type
of teaching.”

Building enthusiasm for a course in the
minds of the students is a challenging
task. To receive encouraging feedback
from students thus is indeed a strong
indicator of the success of such an
experiment.

Design

The benefits of this online style of
instruction naturally lead one to wonder
how far we can take this approach while
it continues to yield positive results. So
over the summer we planned to take it
one step further and adopt this style for
the instruction of a pre-requisite course
for Computer Science majors at UC
Berkeley: Data Structures (or CS 61B).

CS 61B and CS 3 are different in many
aspects that make it an interesting task to
explore whether the former can be
tailored to the WISE way of instruction
analogous to that of the latter. More
importantly, can it achieve the same
level of success?

Students taking this course on Data
Structures, unlike in CS 3, are expected
to be equipped with considerable
previous programming experience at the
time of enrolment. The size of their
programs is no longer limited to 200
lines, and is split into a larger
conglomeration of files. Development of
WISE for the instruction of this course
must allow for this.

There is a large leap in the difficulty
level of Data Structures concepts as
well. Designed to familiarize the
students with key concepts in the realm
of Computer Science, the course is
undeniably much more complex to learn
than is CS 3. There are non-trivial
algorithms that need to be understood
and implemented, as well as intricacies
in the data structures taught that need
delving into.

Design is of key importance in 61B. This
is the class in which students have
traditionally been taught to design large

projects and in which they learn the
skills of modular programming. This is
one aspect that students would prefer
human instruction for.

With all of the above-mentioned
differences, it remains to be seen how
well WISE will fit the curriculum. The
positive aspects that make this
experiment worthwhile include all those
that made CS 3 worth the effort, as was
demonstrated by the results of the
summer experiment. In addition, the
concepts that are taught in CS 61B are
few in number but cover several fine
details amenable to being incorporated
into independent WISE activities.
Moreover, modular programming skills
can be inculcated by asking students to
organize their modules into various
WISE activities. By answering specific
design questions before they embark on
the implementation of the project itself,
the instructor can check to see that they
are on the right track. The online
collaborative tools can also help students
view differing perspectives on the design
process, where they might otherwise
have been averse to walking up to every
other student in lab and asking for their
views.

As taught traditionally, Data Structures
broadly proceeds along the lines of the
following topics:

• Introduction to Java
• Activation Records
• Inheritance in Java
• Exceptions in Java
• Testing methods
• Linked Lists & Arrays
• Game-tree Search
• Asymptotic Analysis
• Hash Tables
• Trees

• Priority Queues/ Binary Heaps
• Binary Trees
• 2-3-4 Trees
• Splay Trees
• Graphs
• Disjoint Sets
• Sorting Algorithms
• Randomized Analysis

After these broad topics are identified,
they need to be represented as WISE
components. Each of the above topics is
designed to be a WISE Project or,
depending on the extensive nature of the
topic, a series of WISE Projects. Every
Project consists of various activities
which may progress in the following
typical manner:

• Display of text introducing the
concept

• Note-taking by the students
• Collective brainstorming
• Exercises to illustrate each new

concept studied
• Online discussions asking the

students to answer fundamental
questions on the topic

Graphs: A Case Study

A case study on graphs and how it is
taught in CS 61B would serve to
illustrate the format of this WISE
teaching tool. The study progresses in
the steps outlined below:

Project: Graphs

§ Introduction
§ Terms to Know
§ Representation:

Adjacency Lists and
Matrices

§ Traversal: DFS and BFS
§ Homework: Modeling a

Map of Berkeley

First, it is important for the instructor
and the student to see eye to eye on the
significance of the course topic. The
introduction of graphs to the students,
therefore, must necessarily illustrate that
graphs are a critical part of the study of
Computer Science and are revisited in
various spheres of Computer Science,
such as Networking, Compilers,
Algorithms etc.

This introduction would best be
followed by an overview of the
terminology used in reference to graphs
that a majority of students would be
unfamiliar with, e.g. degree of a vertex,
how directed graphs are different from
undirected graphs etc. The idea is to
provide the students with background
information on graphs as well as to help
them ‘break into’ the topic and feel
comfortable with it.

After learning what graphs are and how
they look in ‘picture’ form, students
should be taught how this picture can
then be translated into the language of
the computer, i.e. using an adjacency list
and/or an adjacency matrix. Exercises
under this sub-topic would help
demonstrate the idea with further clarity
and students can be asked to convert a
graph from a picture to a list or a matrix
and vice versa, testing them at various
difficulty levels. Understanding when
one representation works out to be more
efficient than another representation is
best illustrated to them as they see the
difference in the two representations. In
particular, giving them a sparse graph
and asking them to provide its
representation in both forms, then giving
them a populated graph and asking for
its representation would drive home the
point. The greater the room for
exercises, the stronger their foundation

of knowledge in the subject, and the
better they learn.

Graphs become much more complex to
deal with when one has to learn to
traverse them. This is where Depth-First
Search and Breadth-First Search enter
the picture. At this stage, students are
not quite as familiar with writing
recursive programs as they need to be to
tackle traversal of graphs. An abundance
of exercises asking students to conduct
DFS and BFS on various graphs helps
them to understand the algorithms to
multiple levels of recursion. Again, the
student gains expertise in the topic as
he/she learns by experimentation and
implementation rather than simply
listening to the theory of graph traversal.

At an introductory level, students are
best off not being fed an overdose of
information that they end up finding
hard to digest. At this stage in the project
they are well-educated with regards to
the critical concepts underlying graphs.
As a homework exercise or a mini-
project, they can be asked to model a
street map of Berkeley – starting with
interpreting words (information
regarding street names and intersections)
in terms of pictures (in the form of a
directed/undirected graph). This can be
followed by asking them to provide both
an adjacency list and an adjacency
matrix representation of the graph, as
well as their evaluation of which would
be more efficient. Specific examples of
DFS and BFS conducted on the graph
could be asked, testing them thus on the
entire breadth of their knowledge of the
topic. Such a case study proves useful to
the students as it puts the various
segments they have learned about into
perspective.

This sample case-study illustrates a
bottom-up approach consisting of a
variety of WISE “activities” and “steps”.
In WISE we would represent it as
follows:

Project: Day 1 of Graphs

Graphs – an introduction
Activity: Introduction
 Step 1: Reading
 What are graphs?
 Why are graphs important?
Activity: Terms to Know
 Step 1: Reading
 Definitions
Activity: Representation of Graphs
 Step 1: Reading
 What are adjacency matrices?
 Step 2: Exercises
 Convert graphs to matrices
 Convert matrices to graphs
 Step 3: Reading
 What are adjacency lists?
 Step 4: Exercises
 Convert graphs to lists
 Convert lists to graphs
 Step 5: Exercises
 Compare lists to matrices
 Which to use and when
Project: Day 2 of Graphs
 Graphs – contd.
Activity: Traversal of Graphs
 Step 1: Reading
 Depth-First Search
 Step 2: Exercises
 Perform DFS on various graphs
 Given DFS sequence, give graph
 Step 3: Reading
 Breadth-First Search
 Step 4: Exercises
 Perform BFS on various graphs
 Given BFS sequence, give graph
 Step 5: Exercises
 Compare the two
 Which to use and when
Activity: Application – Modeling a

Graph of Berkeley
 Step 1: Exercise
 Convert words to pictures
 Step 2: Exercise
 Represent picture as a list/ matrix
 Step 3: Exercises
 Perform DFS on the graph
 Perform BFS on the graph

An identical “Project – Activity – Step”
format can be followed for each of the
topics of instruction, interspersed with
activities for the students to do and learn
from as they proceed.

Discussion

The WISE layout of activities and
learning material proves more effective
in teaching the students because of the
change in emphasis of listening alone vs.
doing. As the students learn a new topic,
WISE activities keep them busy until
they are at ease with the new knowledge
that they have gained. This easily
compares favorably to the classroom
model where students put in hours of
struggle to do homework and projects
when their foundation of background
knowledge is too weak to allow for the
same level of comfort. Learning by
listening cannot compare in
effectiveness to the hands-on experience
they get in lab.

The transition from the traditional model
of teaching to the WISE model is not an
easy one. To make it completely hassle-
free for the students we have to ensure
that the activities match up suitably to
the instruction of the Data Structures
course, given all the differences in this
and CS 3 listed above. The team of
WISE developers is working closely
with the curriculum design group to
adapt WISE to this course in particular

and to build tools that will offer students
the optimal learning environment for CS
61B.

Our plans for the immediate future
involve the completion of this project –
in the form of a WISE course offering of
CS 61B – followed by subsequent
tailoring of WISE to other lower-
division undergraduate CS courses as
well. In the longer run, these courses are
being designed to be taught at the
upcoming UC Merced campus as part of
their Engineering School curriculum for
undergraduates.

Online offerings of these courses benefit
not only the students attending the
classes and learning in lab; this mode of
instruction has considerable scope for
distance learning as well. Students in
community colleges and other smaller
schools can be organized in sections
running labs synchronously in their
remote settings. In this manner, a single
course offering ends up benefiting many
more students than the limited classroom
settings did in the past.

The accessibility and widespread use of
the Internet are the primary factors that
favor this educational setting. The role
of human interaction cannot be
dismissed, but should complement the
role that the web-based environment has
to play. An effective interplay between
these two roles can improve the learning
ability of the students considerably.

References

[1] Clancy, M., Linn, Ryan. C, M.,
Titterton, N., and Slotta, J. “New Roles
for Students, Instructors, and Computers
in a Lab-based Introductory
Programming Course”

