
Generic Sensor Platform for Networked Sensor Nodes

Haywood Ho
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
haywood.ho@intel-research.net

Faculty Advisor: Professor David Culler

Abstract

TinyOS is an event-based operating system designed for use with embedded
networked sensors. However, writing TinyOS code can be intimidating at first, and will
be an especially steep learning curve for those without experience in C. Thus, the
Generic Sensor platform was developed to to abstract away from the lower-level
functionality of the sensors, enabling application programmers to be concerned only
higher-level details. In this current version of the generic sensor platform, multi-hop
routing, the most important improvement since the last version, has been implemented.

1. Introduction/Motivation

 TinyOS is an event-based operating system developed for a wireless network of
deeply embedded sensors. It provides a component based model abstracting hardware
specifies from application programmer. It has been optimized for the needs of sensor
networks: high concurrency required whilst being constrained by the limited physical
parallelism and limited computational ability and energy supply.

 TinyOS code is based upon C code (much of the code is hidden by C preprocessor
macros). Thus, anybody who knows C should be able to pick it up easily. It is compiled
with the special Atmel compiler and then the code is downloaded on the EEPROM
memory of the mote.

 The structure of TinyOS code is rather obscure and complicated (for example, the
multiple parts to an application component), and presents a steep learning curve for those
unfamiliar to the language. (The nesC release, due on September 6, would improve
hopefully alleviate this problem.) However, there are so many applications for the motes
that many researchers outside our group are interested in utilizing these motes. We
believe that this steep learning curve will be hinder the deployment of sensor networks
and thus, there is a need for a simpler interface to the motes.

Definition of Problem

 The problem is as follows. We wish to:

1) Have a cleaner, simpler interface to control the motes;
2) Allow wireless communication with the sensor network using a computer; and

3) Allow the motes to be used for a wide variety of applications.

Importance

 This platform could be used for a variety of applications. Currently, I am
working with the civil engineering students to improve the current platform to support all
the functionalities that they require for their projects. One of the projects is the real-time
monitoring of structures. These sensors would be spread out in critical sections of
buildings and other structures to monitor its structural safety. Other projects include
"shake-tests", where mock structures are equipped with wireless sensors for data
collections in different areas of the structure. Yet another project is detection of wildfire
patterns in forests. All three projects include one core component, which is the sensing
component. However, much code would have to be rewritten if sensing programs were
written specifically for each purpose. With the Generic Sensor Platform, we reuse the
same code over again, and change the sensing behavior of the motes by changing a few
parameters.

Background

 The solution we propose is to have a MATLAB frontend to control a mote
connected to the computer via the UART. This mote would be have the Generic Base
High Speed program installed, which would simply forward packets it received over the
UART from the computer wirelessly to the motes, and vice versa. The other motes in the
network would all be pre-programmed with Generic Sensor, which would allow the
motes to change their behavior in response to incoming packets. Thus, we can avoid
dynamic reprogramming and still allow the motes to be used for many different
applications by sending a variety of different packets.

 There is already some software already in place. One of the graduate students in
the TinyOS group, Kamin Whitehouse developed most of the present generic sensor
code, which he uses for his sensor localization experiments. However, the problem with
the code is that it does not completely fulfill the requirements of many sensing
applications.

 However, there are many difficulties to overcome. Radio communication
between motes currently is not particularly reliable (although this may improve in the
upcoming nesC release), and there are many yet many unsolved ad-hoc routing problems
present. Time synchronization is also an important issue, as many applications require
sensor readings from different motes may be useless otherwise.

2. Design/Architecture

 In the previous version of Generic Sensor, there was a port mapping which
mapped each mote to each serial port of the computer. This was because Kamin's
localization experiments required a large amount of motes, which were all connected
individually to a different port of a port multiplexor. Thus, to send route a command to a
mote, one would send a message to one serial port (obtained from a mapping pre-defined
in the Matlab environment), which would then forward the packet to that specific mote.

 However, in the new version, command messages are broadcasted wirelessly to
the Generic Sensor nodes. The base station, programmed with the Generic Base High
Speed program, would forward the packet it received from the computer over the UART
over the radio to the sensor nodes. Thus, there would be no need for a port mapping.
However, this has not been eliminated in the new architecture yet, as changes to it are
still in progress.

 Currently, the routePacket() function in Matlab merely broadcasts out command
packets to the nodes in the network. (It calls the bcastPacket() function currently.) To
improve this, however, we would modify the Generic Sensor code to allow the target
mote ID to be specified in the command header of the packet. Thus, we would able to
send messages to a specific node in the network.

OSCOPE LEDS

COMMAND

GENERIC_COMM

Figure 1: Architecture of previous version of Generic_Sensor

SLEEP LOGGER LEDS OSCOPE
COMMAND

BCAST

AM_ROUTE

GENERIC_COMM

Figure 2: New architecture of current version of Generic_Sensor

 Thus, when a command is broadcasted out, it goes through the generic
communication stack, and is rebroadcasted upon receipt at the mote (depending on
whether the mote has seen that packet before; if it has it will not rebroadcast it again).
Then the message is propagated up to the command layer where it is processed and

invokes the correct application program accordingly. When the motes wish to route a
packet back to the base station (as is the case with OSCOPE packets), the motes route
them through the AM_ROUTE and then down into the generic communication stack.

Message Structure

 There are 3 Types of Active Messaging (AM) layer packets. AM 8 is used for
command packets, which are sent out from the base station to command the motes in the
network to perform a specific task. AM 5 is used for route discovery. It is broadcasted
from the base station every time before the motes receive a startSensing packet, so that
the motes would be able to know where to route the data packets back to. AM 6 is used
for data packets, which are routed back to the base station, where the data can be
collected and visualized on the computer.

 As can be seen from the figures, the Logger and Sleep components have yet to be
added to the Generic Sensor platform (however this should not prove too difficult, as the
components have already be written, so only minor changes to the code would be
required).

Message structure

Structure of a command packet (for an OSCOPE command packet)
addres
s

AM groupID seq# hopcount maxHopcount ledMas
k

commandCode

GENERIC_COMM
headers

BCAST headers COMMAND headers

ADCaction dataChanne

l
dataDest maxSamples bytesPerSample resetCounter

?

OSCOPE headers

payloa
d

CRC

GENERIC_COMM
footer

3. Conclusion

 The Generic Sensor platform would be important in that it would allow sensor
networks to be used in various different applications. It would speed up the deployment
of sensor networks for different research purposes. The Generic Sensor platform would
go a long way in allowing the users of the network to concentrate on the higher level
aspects of their code, hiding and abstracting away from the lower level TinyOS code that
may include too many details that is not of relevant concern to the users.

 However, much remains to be implemented on the new and developing Generic
Sensor Platform. There are many directions this project can be taken, and I will mention
a few of these in the next section.

Further Work

 There remains much work to be done on the Generic Sensor platform. The Log
and Sleep components remain to be integrated into Generic Sensor code, and
simultaneous sensing from two data channels also needs to be implemented. There are
very interesting time synchronization issues that have not even been examined in this
paper. We should also explore possible alternative ad-hoc routing algorithms and
implement them to see their effectiveness (as opposed to simple broadcast, which, in
theory, over rebroadcasts and nearly always does not come up with the best route). We
should also attempt to make the Generic Sensor platform more robust. Currently there is
no CRC checking on the Matlab side, and packets are often dropped if another message is
currently being processed by the mote. Thus, we should have a mechanism for
retransmission and ultimately, a scheme for reliable wireless data connections between
motes.

