
Cooperative Library
By

Nathan Flores, Clark Li, and Duck Pham

1. Introduction

CL (Cooperative Library) is a new peer-to-peer storage system that provides

guarantees for the efficiency, robustness, and load balance of file storage and retrieval.

CL does all this with a completely decentralized architecture and efficient algorithms that

easily scale to very large systems. The Cooperative Library combined with the

capabilities of the Next Generation Internet can solve many of the problems corporations

and institutions have when dealing with storing mass amounts of data. Current peer-to-

peer systems such as Napster and Gnutella manifest the benefits of cooperative storage

and serving: fault tolerance, load balance, and the ability to harness idle storage and

network resources. With these benefits include a few design challenges. A peer-to-peer

architecture should be symmetric and decentralized, and be able to function well with

unmanaged participants. Finding requested data must be quick in a large system and

servers must be able to join and leave the network frequently without affecting its

robustness or efficiency. Furthermore, data load must be balanced across the available

servers. While the popular peer-to-peer systems solve some of these problems,

practically none solves all of them. The Cooperative Library is a new design that meets

all of the challenges mentioned above.

1.1 Motivation

The Cooperative Library was built to drive demand for the Next Generation Internet,

by creating a peer-to-peer file-sharing network that solves the problems most other P2P

system don’t. Further, it was created to meet the increasing needs for back-up and

storage. IT spending has dropped since the economic slowdown and yet enterprise data

is doubling every year, thus, CL attempts to fill the gap by utilizing existing IT

infrastructure.

Enterprise storage represents a very large and growing market opportunity.

According to IDC, the computer data storage market is expected to increase by a 23.4%

CAGR from $38.3 billion in 2000 to $88 billion in 2004. The three main factors behind

this dramatic growth are the enormous increase in global e-business, growing online data

requirements created by the Internet, and the increasing deployment and complexity of

enterprise applications. According to a study by the School of Information Management

Systems at the University of California, Berkeley, the world produced approximately

three exabytes of new information in 2000, the equivalent of about 500 copies of Gone

With The Wind for every person on earth. This is an impressive fact, but it becomes

really significant when you learn that the total amount of information created from the

day man began drawing on cave walls to the year 1999 is equal to 12 exabytes of

information. Furthe rmore, the study projects that the amount of data being generated will

double every year, leading to the creation of an additional 12 exabytes by the middle of

2002.

2 Background

Conventionally, a company’s storage strategy was to write a check to EMC or IBM.

But why pay millions for monolithic storage devices when you’ve already got the

necessary storage space available? From individual power users to enterprises, today’s

wasted disk space can be harnessed to tomorrow’s dynamically scaling storage networks.

The Cooperative Library allows unused disk space within a corporation to be utilized in

order to meet the increasing needs of storage. CL nodes can be setup at machines within

a company’s network creating an NAS (Network Attached Storage).

A CL file system exists as a set of blocks distributed over the available CL servers.

CL client software interprets the stored blocks as file system data and meta-data and

provides a read-only file-system interface to applications. The heart of the CL software

consists of two layers, Chord and Dhash, which were researched at MIT but implemented

at UC Berkeley. The Dhash (distributed hash) layer performs block fetches for the client,

distributes the blocks among the servers, and maintains cached and replicated copies.

Dhash uses the Chord distributed lookup algorithm to locate the servers responsible for a

block.

3 Related Work

Cooperative Library was inspired by the likes of Napster, Gnutella, CFS, and

OceanStore. In comparison to existing peer-to-peer file sharing systems, CL offers a

simple implementation and excellent performance without sacrificing correctness.

3.1 Naming and Authentication

Like other distributed storage systems [CFS, OceanStore], CL authenticates data by

naming it with public keys or content-hashes. CL implements a secure distributed read-

only file system – such that, a file system in which files can be modified only by their

owner, and only through complete replacement of the file. CL adds the capability to

dynamically find the server currently holding the desired data, via the Chord location

service. This increases the robustness and the availability of CL, since changes in the set

of servers are transparent to clients.

3.2 Peer-to-Peer Search

Napster and Gnutella, are arguably the most widely used P2P file systems today.

They present a keyword search interface to clients, rather than retrieving uniquely

identified data. Gnutella broadcasts search queries to many machines, and Napster

performs searches within centralized servers. CL also provides keyword search where

the query is sent to a distributed Super File, which contains a list of all the files in the

system.

3.3 Peer-to-Peer Hash Based Systems

Like OceanStore, CL layers storage on top of an efficient distributed hash lookup

algorithm. CL stores blocks, rather than whole files, and spreads blocks evenly over the

available servers; this stops large files from causing an unbalanced use of storage space.

CL solves the related problem of different servers having different amounts of storage

space with the notion of virtual servers, which gives server managers control over disk

space consumption. CL’s block storage granularity helps it handle the load of serving

popular large files, since the serving load is spread over many CL nodes along with the

blocks. Such design is much more space-efficient, for large files, than whole-file

caching.

OceanStore aims to build a global persistent storage utility. It provides data privacy,

allows client updates, and guarantees durable storage. With this functionality comes

opportunity cost: complexity. For example, OceanStore uses Byzantine agreement

protocol for conflict resolution, and a complex protocol based on Plaxton trees to

implement the location service.

4 Design and Architecture

Many classic complex computer science problems such as compiler, database,

operating systems, are broken down into different pieces, then tackled individually. It is

said that difficult problems can be solved by imposing different layers of abstraction, CL

is no exception to this rule. CL consists of three layers, namely the Chord layer, the

Dhash layer, and the application layer.

4.1 Chord Layer

At the lowest level of abstraction, resides the Chord layer. Chord is a research

project at MIT. We are using it for two reasons, first, Chord's ability to consistently

locate a node given a hash value of a data block, or a key, secondly, the efficiency of the

algorithm. It runs at O (log n) for node look up and O(log^2 n) for node join. These

following sections will provide general information on the Chord concepts used in our

project.

 - Consistent Hashing: Each Chord node has a unique identifier, obtained by

combining the IP address and the virtual node number. (Virtual node will be described in

the Dhash section. Consistent hashing assigns a specific key to node by first hashing the

key into the node identifier space, then finds the closest existing node with the ID on the

CL network. Closeness of nodes is defined not by physical location, but by the node ID.

This algorithm is designed to allow nodes enter and leave the CL network with minimum

disruption.

 - Node Join/Leave: When a node joins the network, Chord assigns certain key to

the new node. The selection of which key to assign to the new node is chosen by the

definition of closeness of node ID. Similarly, when a node leaves the network, its keys

are reassigned back to the predecessor of the node, because the predecessor will be the

closest in node ID space.

- Finger table: Every virtual node contains a finger table. A finger table carries the

routing information on only a part of the network. Each entry of the node is carefully

chosen by the Chord algorithm, so that they are 2^i (in node ID space) apart from the

previous entry, if i is the position of the node in the finger table. The special arrangement

of the node guarantees a O(log n) look up time.

4.2 Dhash Layer

Building on top of Chord is the Dhash layer. It is responsible to retrieve and store

data blocks reliably, even in an unreliable network environment. The Dhash layer serves

as the communication between the application layer and the Chord layer.

 - Data block: Each data block is associated with a key, generated by the SHA1

hash function. After the Chord layer correctly identifies the node responsible for the key,

the Dhash layer sends a request to retrieve or upload the block.

- Duplicated data blocks: To induce reliability, each data block is replicated 8

times, and the 8 identical blocks are transmitted to 8 different machines for storage. A

block retrieve will fail if and only if all 8 copies are unavailable. When half of the

machine in CL network is down, the chance that a specific block is missing should be

1/2, since we have even distribution of blocks. Given each block is replicated 8 times, the

chance that all of the 8 copies are missing is (1/2) ^ 8 = 0.00391. For the sake of the

proof, let us define a reliable network as when half of the network was wiped out in a

physical attack, the probability that the network can function without any failure is over

99%. If there are n block in the network, to achieve reliability, we need c copies, where

(1/2)^c * (n) < .01. With reliability, there comes a price of performance degradation. The

administrator of CL should carefully choose the number of copies to use in the network.

4.3 Application Layer

- User Interface: In the first version of CL, the UI was web-browser based. This

required the use of servlets further needing an application server such as Tomcat running

on each node. The second version of the UI is based on the Java 2 API primarily on the

swing class library. We tried to build structures following the model/view/control design

allowing them to be easily extendable for future additions in functionality.

- Searching: The search feature is based on a super_file, which is implicitly

distributed throughout the network as is treated like any other file in the system. Every

time a user adds a file into the system, the corresponding domain name, file name, and

file description will be appended at end of the super file. When a search query is

submitted the query text is compared against all file names and keywords in the file

descriptions, then a list of matches; which contain the domain name and file name are

returned to the user.

5 Results

Given the 4-node network provided at the NGI office, CL was able to upload and

download large files successfully between the nodes. Continuous testing of the system

sometimes found that a user is unable to download files large than 150 MB, this bug is

still under inspection. When shutting 2 nodes down, we were still able to obtain all the

data in the system. Overall, the performance of the system was a success, given the

limited time the summer had to offer. Much larger tests were applied to a similar

system1.

6 Conclusion

 CL is a scalable and secure read-only file system. It provides stored data to

applications through an ordinary file-system interface. Servers store blocks of data with

unique identifiers. Clients retrieve blocks from the servers and interpret them as files.

 CL uses the p2p Chord lookup algorithm to map blocks to servers. This mapping

is done dynamically and is implicit. As a result, there is no directory information to be

updated when the underlying network changes. This allows to CL to be robust and

scalable. CL caches data along the lookup path for a block to achieve availability and

further replicates blocks in order to achieve availability. CL achieves load balance by

spreading blocks randomly over servers. It replicates a data block along the successor

1 Frank Dabek et. al., “Wide-area cooperative storage with CFS”, ACM SOSP 2001, Banff, October 2001

list of servers relative to the server that initially holds the block. Although CL has not

been deployed on an Internet-wide scale, download performance should be as fast as

standard FTP. The design of CL has provable efficiency and provably fast recovery

times after failure.

7 Future Work

 CL does not yet support quotas. A malicious user can insert an unlimited amount

of data into the system exhausting all the available storage space. One solution is to

enforce quotas on un-trusted IP addresses, an Idea we currently are pursuing.

 CL cannot yet support concurrent writes. Only one user may insert new files into

the system at a time under that user’s domain, though an unlimited number of users can

concurrently read those files. Synchronization issues are being looked into here and

making the system multi- threaded.

 Further issues were to explore other distributed computing models, such as

combining CL with distributed computing (ex. SETI), and distributed virtual memory;

this might be significant since gigabit Ethernet to memory on other machines would be

faster than paging back to disk.

 Other areas of work would be in the area of load testing. In order to do this, CL

can be set up at different nodes within a corporate LAN and then do frequent block

transfers to exploit the network’s capacity and ability to handle load from varying

locations.

